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We consider Ising spin systems, equivalently lattice gases evolving under 
discrete- or continuous-time Markov processes, i.e., "stochastic cellular 
automata" or "interacting particle systems." We show that for certain spin-flip 
probabilities or rates and suitable initial states the expectation values of 
products of spin variables taken at equal or different times are nonnegative; they 
satisfy the same inequalities as the equal-time correlations of ferromagnetic 
systems in equilibrium (first Griffiths inequality). Extensions of FKG 
inequalities to time-displaced correlations are also discussed. 

KEY WORDS: Probabilistic cellular automata; interacting spin systems; 
correlation inequalities. 

1. I N T R O D U C T I O N  

Spin systems evolving in time under  the act ion of stochastic dynamics  are 

used to model  phenomena  as diverse as the structure of alloys and  the 
funct ioning of neural  networks. <11 While in some cases one is interested 

primari ly in par t icular  explicitly specified measures, whose s ta t ionar i ty  

under  the time evolut ion is incidental ,  there are other cases where the only 
available in format ion  are the dynamica l  rules. Pr ime examples of the 
former are Gibbs  measures, of the form e x p [ - / 3 U ( ~ ) ] ,  for some "local" 
in teract ion potent ia l  U(a). Here a =  {a ,} ,  ~ x =  _+1, x e Z  d, and /~ is the 

reciprocal temperature.  Examples of the latter include various types of 
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stochastic cellular automata used as models for computations with 
errors. (2) 

In this paper we investigate extensions of what Gray (3) calls "statistical 
mechanical behavior" of Gibbs measures to more general processes. An 
example of such statistical mechanical behavior which we shall extend here 
to nonequilibrium systems is that of positivity of spin correlations in 
ferromagnetic systems. An equilibrium system is said to be ferromagnetic 

whenever all the interactions JR entering the potential are positive, i.e., if 
the finite-volume measures #A are of the form 

JR>~0 (1.1) 

Here cr R = IqR ax for R a subset of a region A in the d-dimensional lattice 
Z d. For ferromagnetic systems the expectation values of the spin variables 
a A = I ~ x ~ A  ~r x with respect to the Gibbs measure (1.1) satisfy the (first) 
Griffiths inequality 

< ~  )on/> o (1.2) 

and the Griffiths, Kelly, Sherman (GKS) inequalities 

0 
(O'AOB)eq -- (O'A)eq (OB)eq = ~JB (O'A)eq ~ 0 (1.3) 

for all finite regions A, B in A. The inequalities persist in the 
infinite-volume limit A "~ Z d. 

These correlation inequalities (whose proof is almost by inspection (4)) 
form an important and elegant tool for the study of ferromagnetic spin 
systems. In particular, they can be used to prove important results about 
phase transitions in equilibrium systems. (4's/To the best of our knowledge, 
there has been no discussion in the literature about extensions of the 
inequalities (1.2) and (1.3) to non-Gibbsian measures. This is somewhat 
surprising, given their usefulness for equilibrium systems and the fact that 
there is a natural extension for the somewhat related F K G  (Fortuin, 
Kasteleyn, and Ginibre(61)-type inequalities to time evolutions with "attrac- 
tive" dynamics. In fact, the validity of the F K G  inequalities for Gibbs 
states with appropriate interactions (Section 5) follows directly from the 
time-dependent results by choosing suitable spin-flip rates, for which the 
Gibbs measure is stationary. It would certainly be nice to have similar 
results for the ferromagnetic inequalities (1.2) and (1.3). 

In this paper we prove the Griffiths inequalities (1.2) for measures 
obtained from certain types of stochastic time evolutions of spin systems on 
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a lattice./7~ Unfortunately, the class of processes for which our result holds 
turns out to be rather restrictive. In particular, they do not include (for 
d > 1 ) any of the known spin-flip dynamics leading to ferromagnetic Gibbs 
states. We therefore do not even know whether the time-displaced 
equilibrium correlations in a ferromagnetic system evolving according to 
these spin-flip dynamics are nonnegative, although we expect them to be 
so. In fact, the dynamics for which our results hold have a trivial "phase 
diagram": they are (exponentially) ergodic for the allowed region of 
parameters unless there is a trapping state. As a consequence, the 
domination arguments naturally associated with relations like (1.2) only go 
in one direction. They show uniqueness of the invariant state for certain 
time evolutions. In particular, they give upper bounds for the critical 
temperature of some equilibrium systems. 

We also obtain, using the transcription from d-dimensional stochastic 
cellular automata to ( d+  1)-dimensional Gibbs states (see, for example, 
ref. 8) positive correlations (1.2) for systems whose interactions are not 
entirely ferromagnetic, i.e., some of the JR are negative. Finally, we discuss 
some extensions of the F K G  inequalities to unequal-time correlation 
functions, e.g., 0 , o ( % a , . )  > ( a x ) ( a v ) ,  in suitable systems. 

2. F O R M U L A T I O N  OF T H E  P R O B L E M  

Consider a spin system on the lattice Z J and let crt= {cr!~}~ 
{ - 1 ,  + l}Z~ =  Q be a spin configuration at time t. The configuration a 
evolves in time, discrete or continuous, according to certain stochastic 
dynamics, which are described below. 

2.1. D iscre te  T ime 

We define a Markov process on f2, {a~}k>o such that, given the con- 
figuration a" at time n, the value of the spin at site x is + 1 at time n + 1 
with probability px(an), independent of other sites and the past history of 
the process. The probability px(a) can be written conveniently as 

px(a) = �89 +h(x, a)]  (2.1) 

with h(x,a) a local function for each x ~ Z  d with absolute value 
]h(x, a)j ~< 1. This is equivalent to saying that the spin at x changes sign in 
the nth updating (cr~ + 1= - a ~ )  with a spin-flip probability 

c(x, or)= �89 --axh(x,  a ) ]  (2.2) 

Note that the spin updating at each time step occurs independently at the 
different sites x ~ Z d. This updating will be stochastic unless h(x, a)= +_1, 
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i.e., we are describing the evolut ion of a stochastic (or probabil is t ic)  
cellular a u t o m a t o n  on Z a. 

Starting f rom a measure  # = #o at t ime zero, the measure  at t ime n + 1, 
n = 0, 1, 2,..., is given recursively by the relation 

f f ( a ) # , , + ~ ( d a ) = f T r { f ( a ) U [ l + ~ x h ( x , q ) ] ) # ~ ( d q )  (2.3) 

for any local function f of the configuration.  T r [ . ]  denotes the (nor- 
malized)  trace operat ion:  

where A is the suppor t  of the function {b. We also use the notat ion,  Vn ~ N, 

( f ) . , ~  = f f (a)  #~(da) (2.4) 

for the expectat ion value with respect to the measures  defined in (2.3). If 
# = fir where ~/e ~ is a configuration,  we write (2.4) as ( f ) n , ~ .  A measure  v 
is said to be s ta t ionary  (or invar iant)  if v,, = vn+t in the sense of Eq. (2.3). 
The  process is called ergodic if there is a measure  v such that  #n ~ w v as 
n --* ov for all initial #. This measure  v is necessarily invariant.  

2.2. C o n t i n u o u s  T i m e  

The dynamics  is now specified by the spin-flip rates c(x, a); c(x, a) dt 
is the probabi l i ty  for the spin at site x to flip in the time interval (t, t + dt) 
given that  the configurat ion at t ime t is {~.{7) We can write c(x, a) in the 
form 

c(x, {~) = � 8 9  - axh(x, a ) ]  (2.5) 

where c(x)~>0, sup c ( x ) <  o0, and the functions h(x, .) are as in (2.1). As 
for the discrete-time processes, we write ( f ) , , ~  for the expectat ion of a 
function f with respect to the measure  #, at t ime t if the system is started 
initially with the measure  #o = #.(7) The  corresponding evolut ion equat ion 
is 

d 
dt ( f ) " ~  = ~ (c(x, a)[f(a x) - f ( a ) ]  ),,~ (2.6) 

x 

where a ~ is the configurat ion obta ined f rom a by flipping the spin at x. 
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3. P O S I T I V E - T Y P E  D Y N A M I C S  

The dynamics defined in (2.2) or (2.5) is determined by the functions 
h(x, a), which can be written in the form 

h(x,  ~) = ~, p A(x)  ~ ~ +x (3.1) 
A 

where A + x is the set A ~ Z d translated by the vector x, and ZA runs over 
certain specified regions in the neighborhood of the origin (possibly 
containing it). If the coefficients pA(X) are all positive, we say that the 
dynamics is of positive type. Translation-invariant rates correspond to 
pA(x) independent of x. 

Proposition 1. A dynamics of positive type conserves positive 
correlations. More explicitly, suppose that the initial measure # has all 
correlations positive, i.e., it satisfies the condition (1.2). Then, for a 
dynamics of positive type, 

tm (i) <o-~ ...~m>,.~>~0 
tnl (ii) <~] .-.~rAm>,,~ 

is a nondecreasing function of the parameters {pB(x)} defined in (3.1) and 
of the initial time correlations 

for all A1 ..... A m ~ Z  d and all times t~ ..... tm~O 

We present a simple and direct proof for both discrete- and con- 
tinuous-time processes. For  simplicity we assume that the process is trans- 
lation invariant. 

This proposition can also be derived from the duality theorem of 
Holley and Stroock r or from Theorem III.4.13 in ref. 7. 

3.1. D iscrete  T ime  

It is easy to check that 

<aA>.,~=ZMAB<aB>. , , .=Z(M")Ae jd#aB (3.2) 
B B 

where MAB = Tr[~IxeA h(x, a) a~] and M" is the nth power of the matrix 
M. Since, for positive dynamics, MAB >~ 0 for all A and B and since MAB is 
a nondecreasing function of the parameters, the conclusion follows. The 
same argument shows that <l-[,.~o a~m> is a nonnegative, nondecreasing 
function of the {Pc}, i.e., spins at different times are also positively 
correlated and the correlations are monotone in the coupling coefficients. 
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3.2. Continuous Time 

Let us set the time scale such that c(x)= c = 1 in (2.5). From (2.6) we 
have that 

d 
dt <aA)"~= -IAL <aA),.~+ Y, <h(x,a) a~aA),.~ 

.re A 

and after substituting h(x, a) by (3.1), we get 

d 
x ~ A  B 

Hence, 

; ;o ( aA) , .~=  #(da)aAe IAl,+ y, 2PB (aB+xaxaA),,~ 
x ~ A  B 

e I A l ( s - t )  d s  

(3.3) 

This implies that once the correlations are positive and monotone in the 
{Px}, they remain so at all later times. A more explicit solution to (3.3) 
can be obtained using duality and can be found in refs. 7 and 9. The above 
argument can be repeated for the case of unequal-time correlations. 

4. APPLICATIONS,  GENERALIZATIONS, AND CAUTIONARY 
EXAMPLES 

4.1. Applications 

1. Notice that the inequality Z~ IPA(X)I =~A pA(X)<~ 1 must hold 
for a dynamics of positive type [otherwise c(x, a) could be negative]. This 
implies that these processes have a unique invariant state whenever there is 
no trapping state, i.e., when the inequality is strict. This is a direct con- 
sequence of the following result: 

Proposition 2 (ref. 9; Theorem III.5.1 in ref. 7). With the 
definitions (3.1) and (2.5), suppose 

Then the process as defined in (2.6) is exponentially ergodic, i.e., for any 
probability measure # on f2, 

<aA>,.~--f dvcr A <~2e -~t 

where v is the unique invariant measure. 
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The proof of Proposition 2 can be found in refs. 7 and 9. The 
proposition can be used to give upper bounds on the critical temperature 
of some equilibrium systems. The bound one obtains depends on the 
specific choice of spin-flip rate (and many different dynamics give rise to 
the same invariant measures). We illustrate this now by giving three exam- 
ples of dynamics which have the Gibbs states of the two-dimensional 
nearest neighbor ferromagnetic Ising model at inverse temperature fl as 
their invariant measures. The critical temperature is exactly known: 
fic = 0.44 .... 

a. The standard Glauber rates(12~: 

c(0, a) = �88 - 0"o)[1 +17(0"1 +0"3)][1 + �89 + 0"4)] 

+ �88 + 0"0)[1 -�89 + 0", ) ] [1 - 17(0"2-[- 0.4) ] 

=�89 + �88 + 0"~)(0.2 + 0.4) 

- -  �89 -~ 0"2 AV 0"3 -'~ 0"4)] ,  y = t a n h  2/? 

where 0"1, 0"3 (0"2, 0"4) are the left and right (upper and lower) nearest 
neighbor spins of the spin 0"o- The bound on the critical temperature 
obtained via Proposition 2 by requiring 72+ 27 < 1 for ergodicity of the 
dynamics is ? c > ~ x / 2 - 1 ,  or/?c >j0.19. 

b. Analogously (and using the same notation as above), we can 
obtain the same bound/?c >~0.19 for the rates considered by Kiinsch(13): 

c(0, 0") = exp[ - 2/?ao(a 3 + 0"2)] = cosh2 2/?[1 -- 7ao(a3 + 0"2) + 7262(73] 

c. On the other hand, the stochastic Ising model corresponding to 
the spin-flip rates 

c(0, 0") = { 1 + exp[2/?ao(al + 0" 2 -t- 0" 3 -t- 0"4)] } -1 

= �89 - ~(tanh 4/? + 2 tanh 2/?) ao(0"1 + 0"2 + 0"3 + 0"4) 

-�89 4 / ? -2  tanh 2/?) 0"O(0"l~720"3-'}-0.10"20.4+0"lq30"4"+'0"20"3a4)] 
gives a better bound on the critical temperature: tanh 2/?c ~> 0.5 or tic ~> 0.27. 

2. It is possible to make a connection between a discrete-time 
process and an equilibrium system in one dimension higher by writing the 
transition function as an exponential of a local interaction. (s) For example, 
a one-dimensional voter model with independent spin flips has h(x, 0.)= 
�89 x l + 0 . x + l )  , 0~<c~<l. We rewrite from (2.1) 

Prob(a';+ 11 # * ) -  - 1 + 5 (0.n_ l + 0"n+ 1) 0"n+ 1 

1 
= _ exp[/?a~ + 1 . . . .  N (~ +0"x+l)--flJ0"x-L0"x+l] 
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with 

and 

1 1 + ~ >  0 
fl = ~ l o g  1 - ~  

1 
flJ= --~ log(1 - ~2) >~ 0 

N =  2/(1 - 0~2) 1/4 

In this way the probability of a space-time configuration of the dynamics is 
given by the Gibbs measure [as in (1.1)] with Hamiltonian 

- flH(cr) = ~ . + 1  . . . .  E ~ x  (crx 1-}-cr.,e-+-l)--~Jcrx-lcrx+l] 
x,n 

Despite the fact that this two-dimensional spin system is not ferromagnetic 
(J~> 0), the correlations are still positive by Proposition 1 (see ref. 10 for a 
similar observation). 

4.2. Generalizations 

It is clear that these arguments can be generalized to the non-trans- 
lation-invariant case. We also note that: 

1. The coefficients {pA(X)} may depend on time as well. In par- 
ticular, the h(x, a) can be periodic or random variables. This enables us to 
consider a joint process (a*, ~'), where ~' is some independently specified 
random process, which for fixed ~' trajectories gives rise to a positive-type 
process for cr*. 

2. The assertions of Propositions 1 and 2 remain valid if an exchange 
process (or a Kawasaki dynamics at infinite temperature in the physics 
language In)) is added to the dynamics. The generator of such a process is 
given by 

1 
Lf(cr)=~ Y, [f(crx, y)_f(cr)] (4.1) 

<xy> 

where 

(cr ..... )z=crz if x ~ z ~ y  

=Cry if z = x  

=crx if z = y  
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is the configuration obtained by exchanging the spins at sites x and y. The 
sum in (4.1) is over nearest neighbor pairs. There is no additional com- 
plication if this sum is made asymmetric, i.e., if there is a different 
probability to exchange the spin values for the different neighbors. Notice 
in particular that the dynamics in paragraphs a, b, and c remain ergodic 
when such an exchange process is added for the same range of temperature 
as was specified there. 

4.3. Caut ionary  Examples 

1. Having positive correlations in the initial state is in general not 
sufficient for dynamics which have ferromagnetic Gibbs states as their 
stationary measures. Consider a system of three spins or1, a2, and ao with 
spin-flip rates c(i, or)= e x p [ -  fl~i(crj + ak) ] for i, j, and k different elements 
of {0, 1,2}. The stationary state is v,~exp[fl(o-la2q-glO-2q-o-2a3) ]. We 
can explicitly write down the equations for the correlations at any time t. 
The result is that positive correlations are not conserved by the time 
evolution. A sufficient condition on the initial measure #, besides having 
positive correlations, to get positive correlations at all times is given by 

d/~ sgn(a0 + al + 0"2)90. This condition is also a necessary condition at 
zero temperature (fl = +o o). We expect that starting from all spins up at 
time zero is sufficient to get positive correlations for the infinite system at 
all later times. 

2. A dynamics of positive type does not necessarily conserve the 
"second Griffiths inequality" (1.3). The analog of (1.3)"would say that a 
dynamics of positive type started from a measure satisfying (1.3) satisfies 
the inequalities 

(~A aB)t,~ - (era)t,~(aB),,~ >/0 (4.2) 

This is, however, not true. We give a counterexample in one dimension. Let 
h(x,a)=�89 Then the process has as its unique 
stationary measure the Gibbs measure associated with a nearest neighbor 
pair potential J=�89 cosh 2 7. This Gibbs measure obviously satisfies 
(1.3). However, if the initial/x is a Bernoulli measure with density i/2, then, 
for a l I x ~ Z a n d n > ~ l ,  i > n ,  w i t h 2 = t a n h ? ,  

(axax+i)n,~=(2/2) 2 ((ax + ax+ , ) (a~+,+  ax+,+ 1)).  1,,u = 0 

but 

(~:xerx+,,). . .=(2/2) 2 ((ax+o~+~)(o~+.+ox+.+~)). ~,~=()o/2) 2" 

so that (4.2) fails for A={x ,x+t} ,  B = { x + t , x + t + l } ,  and (discrete 
time) t ~> 1. 
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5. A T T R A C T I V E  D Y N A M I C S  

The dynamics corresponding to the spin flip rates of paragraphs a, b, 
and c of the previous section are attractive, which means roughly that the 
dynamics likes to line up the spins parallel to each other. To be more 
precise, we say that a function f ( a )  is nondecreasing if f(o-)~> f(r/) whenever 
o- x ~> r/x for all x E Z a. Let S(t)f(tl) be the expectation value of f(a t) if the 
configuration at time zero was a ~  r/, i.e., S(t)f(q)= ( f ) t , , -  An attractive 
time evolution is then one which leaves the set of nondecreasing functions 
invariant: S(t)f is nondecreasing for all times t i f f  is nondecreasing. An 
easily verifiable sufficient condition for the attractiveness of a dynamics 
[using the rates (2.5)] is that the functions {h(x, a)} are nondecreasing. 
An attractive dynamics has the property that it preserves positive 
correlations between increasing functions, i.e., if the initial measure /~ 
satisfies the conditions of the F K G  inequalities ~6) 

(5.1) 

for any two nondecreasing functions f and g, then this holds also at all 
later times: for all t ~> O, 

(fg),,;-(f),,~,(g),,~,>~O (5.2) 

Examples of such measures/z are the delta measures 6 +, resp. 6_ ,  concen- 
trated on the configuration with all spin values + 1, resp. all spin values 
-1, and the Bernoulli measure. 

The inequalities (5.2) remain valid also in the limit t T oe. In particular, 
if v is an invariant measure obtained in this way from such a #, then it 
satisfies the F K G  inequalities (5.1). This can be used to prove that the 
Gibbs measure 

Veq~eXp Ifi ~ J(x, Y) ~rxav+ fl ~ h(x) 6x I 

with J(x, y)>~O satisfies the F K G  inequalities (5.1). Clearly, if v is trans- 
lation invariant, then its time-displaced correlation functions are positive, 

( a o a y )  >~ o ' = m :  ' ( a ~ ) ( % )  />0 (5.3) 

where for simplicity we write ( . )  for S v(da), and ( a x )  =m. We note that 
F K G  inequalities can be used to derive bounds on the decay of the 
correlations between two widely separated sets (in space and time) of spins 
in terms of the decay of time-displaced pair correlations. Th4s follows from 
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arguments first described in ref. 14 for equilibrium systems. Let T and S be 
two space-time sets. Define PR=I~RP~x, pt~=�89 for R = T  or S, 
where a!~ is the spin at site x at time t. Then it folows that 

o<. <pTps>- <pT)<ps)~<�88 lsl .(T, S) (5.4) 

where ] Tt and ]SI are the cardinalities of the sets T and S and the function 
( a s  t ") as t u is any upper bound on . xav~ - ( x ) ( G > , ) ,  V(x, s)~ T, (y, t)eS. 

The inequalities (5.4) can be used to obtain bounds on certain 
t t 0 0 dynamical exponents. Thus, the energy-energy correlations ( a  x G>. a x a>.) - 

t t 0 0 axay)  .~G x a!,) in a spin system with ferromagnetic pair interactions must 
decay m time at least as fast as the spin-spin correlations 

t 0 t GO 
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